
KARLSRUHE INSTITUTE OF TECHNOLOGY (KIT) – OPERATING SYSTEMS GROUP

Betriebssysteme
04. Process API

Prof. Dr.-Ing. Frank Bellosa | WT 2016/2017

KIT – Universität des Landes Baden-Württemberg und

nationales Forschungszentrum in der Helmholtz-Gemeinschaft
www.kit.edu

http://www.kit.edu

Where we ended last lecture
The OS provides abstractions for and protection between application

Processes run without privileges in user-space
Kernel governs resources and runs in kernel-space
The distinction between kernel and user-space is made in the CPU
If if a process executes a privileged instruction, the CPU calls the kernel
instead

Address space: all memory the process can name
Stack: Local variables, function call parameters, return addresses
Heap: Dynamically allocated data (malloc)
Data: Global variables, strings
Text: Program, machine code

Execution Model System Calls Process API

F. Bellosa – Betriebssysteme WT 2016/2017 2/31

Where we ended the lecture before that
OS does not always run in the background! Invoke the OS with:

system call application calls OS to request a service
interrupt device calls OS to signal an event

exception CPU calls OS to signal an error/special condition

User-Space

OS Kernel
PCB PCB

Hardware
CPU

Exception

Disk

Interrupt

System Call
Interface

Interrupt Vector
File System

Disk Driver

Scheduler
Virtual Memory Management

Execution Model System Calls Process API

F. Bellosa – Betriebssysteme WT 2016/2017 3/31

Execution Model

Execution Model System Calls Process API
Data Movement Arithmetic Stack Jumping Calling Conventions

F. Bellosa – Betriebssysteme WT 2016/2017 4/31

Assembler
The OS interacts directly with compiled programs

Switch between processes and threads Þ save and restore state
Deal with and pass on signals and exceptions
Receive requests from applications

To understand some OS principles you need to know basic CPU and
hardware details

We assume that you have already studied some assembler in another class
We use the following simplified instruction names in this lecture for clarity

Data Movement

mov Copy data referenced by second operand to location
referenced by first operand

Execution Model System Calls Process API
Data Movement Arithmetic Stack Jumping Calling Conventions

F. Bellosa – Betriebssysteme WT 2016/2017 5/31

x86 Arithmetic Commands

add/sub Different forms (memory/registers) add, subtract, multiply, or
divide two integer operands storing result in first operand

inc/dec Increment (add one) or decrement (subtract one) from a
register or memory location

shl/shr Shift first operand left/right by a number of bits given by
second operand

and/or/xor Calculate bitwise and/or/exclusive or of two operands
storing the result in first operand

not Logically negate operand

Execution Model System Calls Process API
Data Movement Arithmetic Stack Jumping Calling Conventions

F. Bellosa – Betriebssysteme WT 2016/2017 6/31

x86 Stack
Stack Pointer register (SP) holds the address of the top of the stack

Stacks grows downwards
SP points at last allocated word of the
stack (“pre-decrement stack pointer”)

Push makes room for values on the stack
by decrementing the SP and placing the
new element in the newly allocated area

Pop cleans up values from the stack
by incrementing the SP
(the removed data is not overwritten)

Base Pointer (BP) register
(a.k.a. frame pointer) can be used
to organize larger chunks of the stack called stack frames

Execution Model System Calls Process API
Data Movement Arithmetic Stack Jumping Calling Conventions

F. Bellosa – Betriebssysteme WT 2016/2017 7/31

high address

low address

direction of
growth

SP

Bottom of stack

Top of Stack

Basic x86 jump/branch/call Commands

jmp Continue execution at address given in operand.

j$condition Jump conditional depending on PSW content.
If condition is true jump, otherwise just go to next instruction.
$condition examples: je (jump equal), jz (jump zero).

call Used to jump to a function (subroutine). Push the current
code location onto the stack and perform an unconditional
jump to the function address.

return Used to return from a function. Jumps to the return address
on stack.

Execution Model System Calls Process API
Data Movement Arithmetic Stack Jumping Calling Conventions

F. Bellosa – Betriebssysteme WT 2016/2017 8/31

Application Binary Interface

The Application Binary Interface (ABI) standardizes binary interface
between programs/modules/the OS

Specifies executable/object file layout, calling convention, alignment rules
Example: System V AMD64 ABI used in Linux, BSD and Mac OS X

Calling conventions standardize the exact way function calls are
implemented to achieve interoperability between compilers

C (historically) defined such conventions under the name cdecl

Execution Model System Calls Process API
Data Movement Arithmetic Stack Jumping Calling Conventions

F. Bellosa – Betriebssysteme WT 2016/2017 9/31

x86 Calling Conventions

When a function is called, the caller
1 Saves the state of the local scope
2 Sets up parameters where the subroutine can find them
3 Transfers control flow

The called function then:
4 Sets up a new local scope (local variables)
5 Performs its duty
6 Puts the return value where caller can find it
7 Jumps back to calling function (IP)

Functions can call other functions
This is done at step 5

Execution Model System Calls Process API
Data Movement Arithmetic Stack Jumping Calling Conventions

F. Bellosa – Betriebssysteme WT 2016/2017 10/31

Example: cdecl with caller clean-up

We will call the general purpose registers accumulator (A), base (B),
counter (C), data (D), stack pointer (SP), and base pointer (BP)

Depending on the architecture they might have an ’X’, ’L’ or ’H’ suffix and
different prefixes such as ’E’ or ’R’ in other publications

In cdecl A, C, and D are caller-saved, other registers are callee-saved
(e.g., floating point)

Function arguments are passed via the stack
Arguments are pushed in reverse order

Þ Variable parameter number possible via format string in first argument

Return address is saved on stack

Return value is
passed via stack
or via A+D registers

Execution Model System Calls Process API
Data Movement Arithmetic Stack Jumping Calling Conventions

F. Bellosa – Betriebssysteme WT 2016/2017 11/31

Example: cdecl – C functions
caller calls function callee and passes two arguments, 23 and 42.
callee adds the arguments and returns the result.
caller saves the result in res.

#include <inttypes.h>

__attribute__((__cdecl__))
uint32_t callee(uint32_t a, uint32_t b)
{

uint32_t c = a + b;
return c;

}

void caller()
{

uint32_t res = callee(23, 42);
}

You can look at the assembly code with:
$ gcc -m32 -mpreferred-stack-boundary=2 -g -c source.c -o out.o

$ objdump -Sd out.o
Execution Model System Calls Process API
Data Movement Arithmetic Stack Jumping Calling Conventions

F. Bellosa – Betriebssysteme WT 2016/2017 12/31

Example: cdecl – Caller (simplified)

void caller()
{

uint32_t res = callee(23, 42);
}

push BP
mov BP SP
sub SP 12

mov SP+4 42
mov SP 23

call callee

; save old stack frame
; initialize new frame
; reserve memory for
; local vars and arguments

; put arguments on stack
; (reverse order!)

; save IP and jump to callee

Execution Model System Calls Process API
Data Movement Arithmetic Stack Jumping Calling Conventions

F. Bellosa – Betriebssysteme WT 2016/2017 13a/31

old BP

 D

 BP

 A

 SP

Example: cdecl – Caller (simplified)

void caller()
{

uint32_t res = callee(23, 42);
}

push BP
mov BP SP
sub SP 12

mov SP+4 42
mov SP 23

call callee

; save old stack frame
; initialize new frame
; reserve memory for
; local vars and arguments

; put arguments on stack
; (reverse order!)

; save IP and jump to callee

Execution Model System Calls Process API
Data Movement Arithmetic Stack Jumping Calling Conventions

F. Bellosa – Betriebssysteme WT 2016/2017 13b/31

old BP

 D

 BP

 A

 SP

Example: cdecl – Caller (simplified)

void caller()
{

uint32_t res = callee(23, 42);
}

push BP
mov BP SP
sub SP 12

mov SP+4 42
mov SP 23

call callee

; save old stack frame
; initialize new frame
; reserve memory for
; local vars and arguments

; put arguments on stack
; (reverse order!)

; save IP and jump to callee

Execution Model System Calls Process API
Data Movement Arithmetic Stack Jumping Calling Conventions

F. Bellosa – Betriebssysteme WT 2016/2017 13c/31

old BP

 D

 BP

 A

 SP

res

Example: cdecl – Caller (simplified)

void caller()
{

uint32_t res = callee(23, 42);
}

push BP
mov BP SP
sub SP 12

mov SP+4 42
mov SP 23

call callee

; save old stack frame
; initialize new frame
; reserve memory for
; local vars and arguments

; put arguments on stack
; (reverse order!)

; save IP and jump to callee

Execution Model System Calls Process API
Data Movement Arithmetic Stack Jumping Calling Conventions

F. Bellosa – Betriebssysteme WT 2016/2017 13d/31

old BP

 D

 BP

 A

 SP

res

42

Example: cdecl – Caller (simplified)

void caller()
{

uint32_t res = callee(23, 42);
}

push BP
mov BP SP
sub SP 12

mov SP+4 42
mov SP 23

call callee

; save old stack frame
; initialize new frame
; reserve memory for
; local vars and arguments

; put arguments on stack
; (reverse order!)

; save IP and jump to callee

Execution Model System Calls Process API
Data Movement Arithmetic Stack Jumping Calling Conventions

F. Bellosa – Betriebssysteme WT 2016/2017 13e/31

old BP

 D

 BP

 A

 SP

res

42

23

Example: cdecl – Caller (simplified)

void caller()
{

uint32_t res = callee(23, 42);
}

push BP
mov BP SP
sub SP 12

mov SP+4 42
mov SP 23

call callee

; save old stack frame
; initialize new frame
; reserve memory for
; local vars and arguments

; put arguments on stack
; (reverse order!)

; save IP and jump to callee

Execution Model System Calls Process API
Data Movement Arithmetic Stack Jumping Calling Conventions

F. Bellosa – Betriebssysteme WT 2016/2017 13/31

old BP

 D

 BP

 A = 65

 SP

res

42

23

return IP

Example: cdecl – Callee (simplified)
uint32_t callee(uint32_t a, uint32_t b)
{

uint32_t c = a + b;
return c;

}

callee:
push BP
mov BP SP
sub SP 4

mov A BP+12
mov D BP+ 8
add A D
mov BP-4 A

mov A BP-4
leave
ret

; function label
; save frame pointer
; create new frame
; make room for c

; fetch 42 into A
; fetch 23 into D
; A = A + D
; put result into variable c

; put return value into A
; restore old stack frame
; jump back to caller

Execution Model System Calls Process API
Data Movement Arithmetic Stack Jumping Calling Conventions

F. Bellosa – Betriebssysteme WT 2016/2017 14a/31

old BP

 D

 BP

 A

 SP

res

42

23

return IP

callers BP

Example: cdecl – Callee (simplified)
uint32_t callee(uint32_t a, uint32_t b)
{

uint32_t c = a + b;
return c;

}

callee:
push BP
mov BP SP
sub SP 4

mov A BP+12
mov D BP+ 8
add A D
mov BP-4 A

mov A BP-4
leave
ret

; function label
; save frame pointer
; create new frame
; make room for c

; fetch 42 into A
; fetch 23 into D
; A = A + D
; put result into variable c

; put return value into A
; restore old stack frame
; jump back to caller

Execution Model System Calls Process API
Data Movement Arithmetic Stack Jumping Calling Conventions

F. Bellosa – Betriebssysteme WT 2016/2017 14b/31

old BP

 D

 BP

 A

 SP

res

42

23

return IP

callers BP

Example: cdecl – Callee (simplified)
uint32_t callee(uint32_t a, uint32_t b)
{

uint32_t c = a + b;
return c;

}

callee:
push BP
mov BP SP
sub SP 4

mov A BP+12
mov D BP+ 8
add A D
mov BP-4 A

mov A BP-4
leave
ret

; function label
; save frame pointer
; create new frame
; make room for c

; fetch 42 into A
; fetch 23 into D
; A = A + D
; put result into variable c

; put return value into A
; restore old stack frame
; jump back to caller

Execution Model System Calls Process API
Data Movement Arithmetic Stack Jumping Calling Conventions

F. Bellosa – Betriebssysteme WT 2016/2017 14c/31

old BP

 D

 BP

 A

 SP

res

42

23

return IP

callers BP

c

Example: cdecl – Callee (simplified)
uint32_t callee(uint32_t a, uint32_t b)
{

uint32_t c = a + b;
return c;

}

callee:
push BP
mov BP SP
sub SP 4

mov A BP+12
mov D BP+ 8
add A D
mov BP-4 A

mov A BP-4
leave
ret

; function label
; save frame pointer
; create new frame
; make room for c

; fetch 42 into A
; fetch 23 into D
; A = A + D
; put result into variable c

; put return value into A
; restore old stack frame
; jump back to caller

Execution Model System Calls Process API
Data Movement Arithmetic Stack Jumping Calling Conventions

F. Bellosa – Betriebssysteme WT 2016/2017 14d/31

old BP

 D

 BP

 A = 42

 SP

res

42

23

return IP

callers BP

c

Example: cdecl – Callee (simplified)
uint32_t callee(uint32_t a, uint32_t b)
{

uint32_t c = a + b;
return c;

}

callee:
push BP
mov BP SP
sub SP 4

mov A BP+12
mov D BP+ 8
add A D
mov BP-4 A

mov A BP-4
leave
ret

; function label
; save frame pointer
; create new frame
; make room for c

; fetch 42 into A
; fetch 23 into D
; A = A + D
; put result into variable c

; put return value into A
; restore old stack frame
; jump back to caller

Execution Model System Calls Process API
Data Movement Arithmetic Stack Jumping Calling Conventions

F. Bellosa – Betriebssysteme WT 2016/2017 14e/31

old BP

 D = 23

 BP

 A = 42

 SP

res

42

23

return IP

callers BP

c

Example: cdecl – Callee (simplified)
uint32_t callee(uint32_t a, uint32_t b)
{

uint32_t c = a + b;
return c;

}

callee:
push BP
mov BP SP
sub SP 4

mov A BP+12
mov D BP+ 8
add A D
mov BP-4 A

mov A BP-4
leave
ret

; function label
; save frame pointer
; create new frame
; make room for c

; fetch 42 into A
; fetch 23 into D
; A = A + D
; put result into variable c

; put return value into A
; restore old stack frame
; jump back to caller

Execution Model System Calls Process API
Data Movement Arithmetic Stack Jumping Calling Conventions

F. Bellosa – Betriebssysteme WT 2016/2017 14f/31

old BP

 D = 23

 BP

 A = 65

 SP

res

42

23

return IP

callers BP

c

Example: cdecl – Callee (simplified)
uint32_t callee(uint32_t a, uint32_t b)
{

uint32_t c = a + b;
return c;

}

callee:
push BP
mov BP SP
sub SP 4

mov A BP+12
mov D BP+ 8
add A D
mov BP-4 A

mov A BP-4
leave
ret

; function label
; save frame pointer
; create new frame
; make room for c

; fetch 42 into A
; fetch 23 into D
; A = A + D
; put result into variable c

; put return value into A
; restore old stack frame
; jump back to caller

Execution Model System Calls Process API
Data Movement Arithmetic Stack Jumping Calling Conventions

F. Bellosa – Betriebssysteme WT 2016/2017 14g/31

old BP

 D = 23

 BP

 A = 65

 SP

res

42

23

return IP

callers BP

c = 65

Example: cdecl – Callee (simplified)
uint32_t callee(uint32_t a, uint32_t b)
{

uint32_t c = a + b;
return c;

}

callee:
push BP
mov BP SP
sub SP 4

mov A BP+12
mov D BP+ 8
add A D
mov BP-4 A

mov A BP-4
leave
ret

; function label
; save frame pointer
; create new frame
; make room for c

; fetch 42 into A
; fetch 23 into D
; A = A + D
; put result into variable c

; put return value into A
; restore old stack frame
; jump back to caller

Execution Model System Calls Process API
Data Movement Arithmetic Stack Jumping Calling Conventions

F. Bellosa – Betriebssysteme WT 2016/2017 14h/31

old BP

 D = 23

 BP

 A = 65

 SP

res

42

23

return IP

callers BP

c = 65

Example: cdecl – Callee (simplified)
uint32_t callee(uint32_t a, uint32_t b)
{

uint32_t c = a + b;
return c;

}

callee:
push BP
mov BP SP
sub SP 4

mov A BP+12
mov D BP+ 8
add A D
mov BP-4 A

mov A BP-4
leave
ret

; function label
; save frame pointer
; create new frame
; make room for c

; fetch 42 into A
; fetch 23 into D
; A = A + D
; put result into variable c

; put return value into A
; restore old stack frame
; jump back to caller

Execution Model System Calls Process API
Data Movement Arithmetic Stack Jumping Calling Conventions

F. Bellosa – Betriebssysteme WT 2016/2017 14i/31

old BP

 D = 23

 BP

 A = 65

 SP

res

42

23

return IP

callers BP

c = 65

Example: cdecl – Callee (simplified)
uint32_t callee(uint32_t a, uint32_t b)
{

uint32_t c = a + b;
return c;

}

callee:
push BP
mov BP SP
sub SP 4

mov A BP+12
mov D BP+ 8
add A D
mov BP-4 A

mov A BP-4
leave
ret

; function label
; save frame pointer
; create new frame
; make room for c

; fetch 42 into A
; fetch 23 into D
; A = A + D
; put result into variable c

; put return value into A
; restore old stack frame
; jump back to caller

Execution Model System Calls Process API
Data Movement Arithmetic Stack Jumping Calling Conventions

F. Bellosa – Betriebssysteme WT 2016/2017 14/31

old BP

 D = 23

 BP

 A = 65

 SP

res

42

23

return IP

callers BP

c = 65

Passing Parameters to the System

Execution Model System Calls Process API
Parameter Passing Handlers

F. Bellosa – Betriebssysteme WT 2016/2017 15/31

Parameter Passing and Return

The system call number must be passed to the kernel along with other
parameters which are specific to the called service

There are different places in which parameters can be transferred
A limited number of parameters can be passed via CPU registers (∼ 6)
More parameters or data-types such as strings are passed via main
memory (heap or stack)
All parameters can also be passed via stack or heap
Þ the ABI specifies how to pass parameters

A return code needs to be returned to the application
Negative numbers usually used as error codes
Positive number and 0 indicate success

Return codes are usually returned via the A+D registers

Execution Model System Calls Process API
Parameter Passing Handlers

F. Bellosa – Betriebssysteme WT 2016/2017 16/31

Parameter Passing Example
1-4 Is a library function call using cdecl. The program pushes parameters

for the read syscall and calls the syscall wrapper from unistd.h.

5 Set up syscall number and
parameters

Here, parameters are passed
via the stack and are already
in the right place
The system call number is
passed via register

6 Caller traps into the kernel

7-8 The dispatcher looks up the
syscall number and calls the
correct handler

9-11 The kernel returns after
finishing the services or in
case of an error

Execution Model System Calls Process API
Parameter Passing Handlers

F. Bellosa – Betriebssysteme WT 2016/2017 17/31

System Call Handler

The System Call Handler implements the actual service

1 Saves registers that it taints

2 Reads the parameters that were passed by the caller

3 Sanitizes/checks the parameters

4 Checks if the process has permission to perform the requested action

5 Performs the requested service on behalf of the process

6 Returns to the caller with a success or error code

Checking parameters and permissions is crucial
Many bugs in syscall handlers have led to privilege escalation in the past

Execution Model System Calls Process API
Parameter Passing Handlers

F. Bellosa – Betriebssysteme WT 2016/2017 18/31

Process API

Execution Model System Calls Process API
Creation Hierarchies Termination

F. Bellosa – Betriebssysteme WT 2016/2017 19/31

Process Creation
Four events cause processes to be created
1. System initialization (booting)
2. Process creation syscall issued by a running process
3. User request to create a new process
4. Initiation of a batch-job

Those events all actually map to the same two mechanisms
The Kernel spawns the initial user space process on boot
1. Linux: init

User space processes can spawn further processes (within their quota)
2. Windows: CreateProcess, POSIX: fork
3. Windows: e.g., click on file

Þ explorer.exe calls CreateProcess
4. Linux: e.g., cron daemon is started on boot

Þ starts batch jobs defined in cron table

Execution Model System Calls Process API
Creation Hierarchies Termination

F. Bellosa – Betriebssysteme WT 2016/2017 20/31

POSIX Process Creation using fork

Every process is identified by its process identifier (PID)

pid = fork() duplicates the current process
The call returns 0 to the new child
It returns the new process PID to the parent

Þ Can continue differently in parent and child process after fork

exec(name) replaces own memory based on an executable file
name specifies the binary executable file

exit(status) terminates own process and returns an exit status

pid = waitpid(pid, &status) wait for termination of a child
Pass pid of process to wait for as argument
status points to a data structure that returns information about the
process,
e.g., the exit status
The passed pid is returned on success, otherwise -1 indicates failure

Execution Model System Calls Process API
Creation Hierarchies Termination

F. Bellosa – Betriebssysteme WT 2016/2017 21/31

POSIX Process Creation using fork

Execution Model System Calls Process API
Creation Hierarchies Termination

F. Bellosa – Betriebssysteme WT 2016/2017 22/31

Process Environment

You can pass environment variables when creating a process

The environment is typically defined by your shell (type env in Linux)

$ env
[...]
SHELL=/bin/bash
TERM=xterm-256color
[...]
USER=bellosa
[...]
EDITOR=emacs

Further environment variables are passed with execve

Execution Model System Calls Process API
Creation Hierarchies Termination

F. Bellosa – Betriebssysteme WT 2016/2017 23/31

Command Line Arguments

You can pass arguments to a process at creation
$ cp f f2 – execute program cp with arguments “f” and “f2”
Flags are arguments given with a special leading character

e.g., Windows uses / character: try copy.exe /? in cmd.exe
e.g., Linux and Mac OS use - character: try cp -r dir1 dir2 in terminal
e.g., Linux and Mac OS also have long options --: try cp --help

Clicking a file in Windows or Linux is really just calling the default handler
with the filename as the argument

In Linux this equates to xdg-open <filename>

Arguments are passed as a vector of strings
Arguments are specified when using execv or execve
The flag format is just a convention Þ all arguments are simply strings

argv[0] argv[1] argv[2] \0

"cp" "f" "f2"

Execution Model System Calls Process API
Creation Hierarchies Termination

F. Bellosa – Betriebssysteme WT 2016/2017 24/31

Passing the Argument Vector

In C, programs begin executing at the main function

int main(int argc, char *argv[], char *envp[]);

In principle, the OS calls main with the arguments given to execve

argc is the argument count, the number of arguments
argv and envp are the argument and environment vector pointers
If execv is used, then envp = NULL
If exec is used, then argc = 0; argv = NULL; envp = NULL

In C, the main function is handled just like any other function in regard
to its stack representation

The OS writes the arguments’ strings (e.g., “cp”, “f”, “f2”)
somewhere in memory (e.g., in the data section)
The OS then creates an initial process stack by pushing the argv pointers
that contain the memory addresses of those argument strings
Finally, the IP of the process is set to the main label

Execution Model System Calls Process API
Creation Hierarchies Termination

F. Bellosa – Betriebssysteme WT 2016/2017 25/31

POSIX Process Hierarchy

Parent process creates
child processes, which in
turn create other processes,
forming a process tree

Parent and children share
resources (parts of the AS)

Parent and children execute
concurrently

Parent waits until children
terminate to collect their
exit status (with waitpid)

Execution Model System Calls Process API
Creation Hierarchies Termination

F. Bellosa – Betriebssysteme WT 2016/2017 26/31

Daemons
Some processes are designed to run in the background

e.g., a web server

Those daemons are detached from their parent process after creation
This can be done by creating a new session using setsid in C
In bash this can be done with disown

Daemons are (re-)attached directly to the root of the process tree (init)
init automatically collects their exit status (and ignores it)

On your Linux machine you can check out the process structure with
pstree -a

Execution Model System Calls Process API
Creation Hierarchies Termination

F. Bellosa – Betriebssysteme WT 2016/2017 27/31

Process States
Sometimes processes wait for events or other processes

Processes may block (do nothing but wait)
This usually happens on system calls
OS does not run the process until the event happens
e.g., input from keyboard, network packets, child to return, ...

Execution Model System Calls Process API
Creation Hierarchies Termination

F. Bellosa – Betriebssysteme WT 2016/2017 28/31

Process Termination

Four events cause processes to terminate:

1. Normal exit (voluntary)
return 0; at end of main or exit(0);

2. Error exit (voluntary)
return x; at end of main, exit(x), or abort(); (x != 0)

3. Fatal error (involuntary)
OS kills process after exception (e.g., illegal instruction or memory
reference)
Process exceeds allotted resources (man ulimit)

4. Killed by another process (involuntary)
Another process sends a signal to kill the process
Only with permission (parent process or administrator privileges)
e.g., Windows: TerminateProcess
e.g., Linux: kill(<pid>, -9); (see man 7 signal)

Execution Model System Calls Process API
Creation Hierarchies Termination

F. Bellosa – Betriebssysteme WT 2016/2017 29/31

Exit Status
Processes return their exit status in form of an integer on voluntary exit

In Linux only the last 8 Bits are significant, regardless of the integer’s size

The process resources cannot be completely free’d after it terminates
A Zombie or process stub, that can deliver the exit status remains until it is
collected via waitpid. Only then can the PID be free’d and all resources
deallocated

Children that keep running after their parent exits are called orphans
Today, init generally adopts orphans – they keep running.
Init collects and ignores the exit status on exit
Some systems perform a cascading termination Þ The OS kills all children
when a parent exits

On involuntary exits of children
Bits 0-6 contain the signal number that killed the process (0 on normal exit)
Bit 7 is set if the process was killed by a signal
Bits 8-15 are 0 if killed by signal (exit status on normal exit)

Execution Model System Calls Process API
Creation Hierarchies Termination

F. Bellosa – Betriebssysteme WT 2016/2017 30/31

Further Reading

Tanenbaum/Bos, “Modern Operating Systems”, 4th Edition: Pages
38–50

Stallings, “Operating Systems – Internals and Design Principles”, 6th
Edition: Pages 50–104

Silberschatz, Galvin, Gagne, “Operating System Concepts”, 8th Edition:
Pages 55–66 and 110–116

Matz, Hubička, Jaeger, Mitchell, “System V Application Binary Interface
– AMD64 Architecture Processor Supplement”

Execution Model System Calls Process API
Creation Hierarchies Termination

F. Bellosa – Betriebssysteme WT 2016/2017 31/31

	04. Process API
	Execution Model
	Data Movement
	Arithmetic
	Stack
	Jumping
	Calling Conventions

	System Calls
	Parameter Passing
	Handlers

	Process API
	Creation
	Hierarchies
	Termination

